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a b s t r a c t

Keystroke Dynamics, which is a biometric characteristic that depends on typing style of

users, could be a viable alternative or a complementary technique for user authentication if

tolerable error rates are achieved. Most of the earlier studies on Keystroke Dynamics were

conducted with irreproducible evaluation conditions therefore comparing their experi-

mental results are difficult, if not impossible. One of the few exceptions is the work done by

Killourhy and Maxion, which made a dataset publicly available, developed a repeatable

evaluation procedure and evaluated the performance of different methods using the same

methodology. In their study, the error rate of neural networks was found to be one of the

worst-performing. In this study, we have a second look at the performance of neural

networks using the evaluation procedure and dataset same as in Killourhy and Maxion’s

work. We find that performance of artificial neural networks can outperform all other

methods by using negative examples. We conduct comparative tests of different algo-

rithms for training neural networks and achieve an equal error rate of 7.73% with Leven-

bergeMarquardt backpropagation network, which is better than equal error rate of the

best-performing method in Killourhy and Maxion’s work.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction A typical Keystroke Dynamics verification systemworks as
The fact that people show unique typing characteristics

and the opportunity of using this information for security

purposes was first discovered by telegraph operators (Bryan

and Harter, 1994). Applying the same idea to computer

keyboards provide the basis for Keystroke Dynamics, which

is defined as “the process of analyzing the way user types

on a terminal by monitoring the keyboard inputs” (Monrose

and Rubin, 2000). Keystroke Dynamics provides a behav-

ioral biometric feature which identifies individuals from

their typing style. It depends on the observation that

individuals show unique characteristics when they type on

a keyboard.
. Uzun), bicakci@etu.edu
ier Ltd. All rights reserved
follows. For a newuser to be enrolled in the system, a profile is

created from a set of typing samples collected from that

particular user. There are different types of data available

including typing pressure on the keys, finger temperature, etc.

But because of practical reasons, the two most commonly

used measurements are keystroke latency, which is the

amount of time that passes between consecutive key press

events and keystroke duration, which is the amount of time

each key is being pressed.When there is a new access attempt

to the system, the relevant keystroke data is compared to the

stored user profile. The access is verified if the discrepancy

between the data and profile is below the selected threshold,

and rejected otherwise. Although it is possible to set a global
.tr (K. Bicakci).
.
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threshold for all users, most implementations choose to

specify a different optimized threshold value for each user, in

order to adapt the difference in user behaviors.

Performance of a keystroke based identity verifier is

generally evaluated as follows. Firstly, a set of typing samples

is collected from users. For each user, a subset of typing

samples is used to construct a profile and the remaining

samples are used for testing. Additional typing samples may

be collected to simulate impostor login attempts. For perfor-

mancemetrics related to algorithms, FMR (FalseMatch Rate)e

the ratio of wrongfully accepted impostor attempts and FNMR

(False Nonmatch Rate) e the ratio of rejected legal attempts of

an authorized user could be used (Jain et al., 2004) (We note

that although the terms FAR (False Acceptance Rate) and FRR

(False Rejection Rate) refer to error rates for systems, they are

also used for describing error rates related to algorithms in

many studies in the literature). Even computing both FNR and

FNMR together may sometimes be insufficient to make reli-

able comparisons between performances of different systems

since one method may have lower FMR while the other has

lower FNMR or vice versa. The performance metric that

overcomes this problem is EER (Equal Error Rate), which is

measured by adjusting the acceptance threshold value so that

FMR value is equalized to FNMR and is measured using

“Receiver Operating Characteristics” (Green and Swets, 1996).

There are various methods proposed in the literature as

keystroke identity verifiers. A long-standing problem in

Keystroke Dynamics is discovering the best-performing

method that achieves the lowest error rates. Although

performance of many different methods were reported in the

literature, as Killourhy and Maxion pointed out (2009), it is

usually not possible to compare these different experimental

results because of (i) the differences in the features used to

train and test verifiers; (ii) diversity of the evaluation condi-

tions (e.g., length of typing samples, number of typing

repetitions, outlier-handling procedures, number of authen-

tication attempts, the update of the model over time); (iii)

inconsistent types of performance results reported (e.g., EER,

FMR when FNMR ¼ 0, etc.).

Motivated by the difficulty of comparing different verifi-

cation methods using the evaluation results reported in the

literature, Killourhy andMaxion decided to collect a dataset to

be made publicly available and test an exhaustive list of

methods using this dataset under the same conditions. They

encourage other researchers to evaluate the performance of

other methods using their dataset. With the same dataset and

by applying the same methodology, other results can be

compared with validity using the results in their work (2009).

The equal error rates obtained using neural networks and the

best method in Killourhy and Maxion’s work are given in
Table 1 e Selected equal error rates from Killourhy and
Maxion’s work.

Detector Average EER (%)

The best detector (i.e., Manhattan (scaled)) 9.6

Neural network (auto-assoc.) 16.1

Neural network (standard) 82.8
Table 1. It is interesting to see that EER value reported in the

study for standard neural network is 82.8%, which is worse

than even a random verifier with EER of 50%. Although the

error rate for auto-associative neural network is much better

(16.1%), it stills performs poorer than other types of detectors.

Because of the abnormally poor performance of neural

networks reported in previouswork, our aim in this study is to

have a second look at their performance for Keystroke

Dynamics. We investigate whether the high error rate repor-

ted was due to incompatibility of neural networks for the

problem of Keystroke Dynamics or its imperfect usage by the

earlier work. After performing a detailed study, we find that by

taking advantage of incorporating negative examples into the

training, the performance of artificial neural networks can be

significantly improved. We conduct comparative tests of

different algorithms for training neural networks and achieve

an equal error rate of 7.73% by using LevenbergeMarquardt

backpropagation network, which is better than 9.6% - the

equal error rate of the best-performing method in Killourhy

and Maxion’s work (2009).1,2

The rest of the paper is organized as follows. Section 2

overviews the related work. Section 3 introduces the training

algorithms for backpropagation neural networks used in our

study. Section 4 presents and discusses our experimental

results. Section 5 concludes the paper.
2. Related work

Verification of user identities based on their keystroke profiles

has been extensively studied in the last two decades. Most

proposed verification algorithms are based on statistical,

neural network and other machine learning methods. In the

statistical approach, the test samples are compared with the

reference set of training samples while the neural network

methods build a prediction model using the training samples.

Since our aim in this paper is to gain new knowledge about the

use of neural networks for Keystroke Dynamics, in this

section our main focus is on earlier work which used neural

network methods. Nevertheless, for the sake of completeness

we also present the major results regarding the keystroke

analysis using other methods (Killourhy and Maxion’s work

introduced in the previous section is discussed further in

Section 4). A more general survey on this topic can be found

elsewhere (e.g., Shanmugapriya and Padmavathi, 2009).

One of the initial efforts in the area was made by Bleha

et al. (1990) using Bayes classification in which 32 users

participated in the experiments and key latency was used as

a metric for user validation. Among the participants, 10 were

valid users of the system and 22 of them tried to imitate the

valid users. The result of the study was promising. Rejection

rate of valid users (FNMR) was 8.1% and acceptance rate of
1 In line with the practice of shared data promoted in the
mentioned study, we make the source code of all algorithms used
in our tests available (Uzun, 2011).

2 We note that there is another Keystroke Dynamics benchmark
dataset developed by Giot et al. (2009a, b) which is available via
request. There is also an application available online to extend
this dataset.
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invalid users (FMR) was 2.1%. The authors noted that themain

reason of the errors was inconsistent typing style of inexpe-

rienced users.

A more complicated identity verifier was developed by

Joyce and Gupta (1990), which recognize users by their

“signatures”, consisting of the typing latencies of four

elements: user name, password, name, and surname. In their

method, a similarity vector is calculated by comparing the

latencies in training and test signatures. The user is positively

identified if the elements in the similarity vector lie under

specific thresholds, which is determined by mean and stan-

dard deviations of the reference (training) signature. Among

975 trials in total, FMR was reported as 0.25% and FNMR as

16.6%.

Obaidat and Macchairolo (1993) analyzed Keystroke

Dynamics as a classification problem rather than verification.

In data collection phase, 6 participants typed a predefined

sequence of characters for 20 times and keystroke latencywas

used as the feature vector, which consists of 15 feature

elements. Using the collected raw data, a hybrid sum-of-

products neural network was trained with 15 inputs, 4

hidden units and 3 outputs. The classification system was

designed to assign each test pattern to a predefined class and

the reported classification success rate was 97.8%.

K-means algorithm was used for Keystroke Dynamics

verification in the study of Kang et al. (2007). In the experi-

ments, 150 samples (75 genuine and 75 impostor attempts)

were collected from 21 participants. For each user, the authors

divided the training sample set into three groups using

k-means clustering. In testing phase, for an incoming sample,

theminimum Euclidean distance between the sample and the

nearest of the three cluster centers was accepted as the

distance between the sample and the profile, to be used to

determine the likeliness of the user as being genuine. The

authors compared fixed, growing and moving window

approaches for training the verifier and for these approaches

they obtained the equal error rates of 4.8%, 3.8% and 3.8%,

respectively.

An example of machine learning approach for keystroke

verification problem is thework of Fan et al. (2004), p. 666e669,

which employed Support Vector Machines as a solution. In

this study, the authors recruited 10 subjects in total, who

typed an alphabetic password of 10 characters and a numeric

password of 8 characters and each user was imitated by five

other users. Using combination of two passwords, the authors

employed both one-class and two-class SVM to recognize the

users. The error rates were 2% FMR and 10% FNMR, 10% FMR

and 10% FNMR for one-class and two-class SVM respectively.

Another support vector machine based keystroke verifi-

cation algorithm was developed by Giot et al. (2009). The

participants typed the phrase “greyc laboratory” six times in the

experiments. In the enrollment phase, two-class support

vector machine is trained for each user using 5 training

samples. The output of the machine was either þ1 or �1

depending on the owner of the sample (genuine or impostor).

The authors investigated two different issues in their study:

the effect of keyboard change between enrollment and veri-

fication and the comparison of support vector machines with

statistical, distance based and rhythm based algorithms. It

was found that keyboard change had not led to significant
degradation in verification accuracy. In the experiment

results, the proposed SVM method outperformed all other

methods with EER values varying between 10.30% and 11.76%

for different keyboard combinations.

Besides other machine learning and statistical methods,

many researchers have utilized different kinds of artificial

neural networks for Keystroke Dynamics. One of the early

efforts was the work of Cho et al. (2000), in which the authors

used auto-associative neural network scheme, a kind of

backpropagation neural network. In their experiments, a total

of 25 subjects were asked to type passwords of their choice

with 7 characters. Each subject typed his/her password

150e400 times, from which latest 75 samples were reserved

for the test and their typing styles were imitated by 15

impostors for 5 times. The auto-associative multilayer per-

ceptron, which is a three layer feed forward backpropagation

network was trained for each user. The authors reported that

they had achieved 1.0% FMR with 0 FNMR.

ARTMAP-FD neural network, an extension of the Fuzzy

ARTMAP-also a type of neural network was proposed as

a solution for keystroke based authentication by Loy et al.

(2007). The collected dataset consists of 100 samples

collected from 10 participants (10 from each). In their tests,

using only keystroke latency, the best average EER (14.94%)

was achieved using ARTMAP-FD. When the feature dataset

was enlarged with keystroke pressure, the average error is

decreased to 11.78%.

Lee and Cho trained a novelty detector for learning vector

quantization network, another kind of neural network (2007).

In their experiments, 21 users simulated legitimate users with

individual passwords and 15 participants simulated impostor

login attempts. For each user, 50 valid (positive) and 5

impostor (negative) keystroke timing vectors were used for

training. For testing, 75 normal attempts and 70 impostor

attempts were used. Initially, the authors trained the detec-

tors using positive-only data and then negative examples

were used together with positive examples. The average EER

were reported as 0.59% when only positive examples were

used. When negative examples (impostor attempts) were also

used for training, the average EER was reduced to 0.43%.

In the studies described above, the authors proposed their

approaches and presented experimental results indepen-

dently. In contrast, Obaidat and Sadoun performed compre-

hensive tests for statistical and neural network approaches

(1997). 15 users have participated in their experiments, in

which each subject had a special user IDwith different lengths

having an average size of 7 characters. For eight weeks, each

user provided 15 sequences daily. Each user also provided 15

samples for each of the other subjects. The dataset was par-

titioned into two halves: training and testing. Like test set,

training set also includes impostor samples. The authors

concluded that neural network approaches are superior to

statistical approaches and achieve quite promising results

(zero for both FMR and FNMR) when impostor samples are

available during training.

Similar to Obaidat and Sadoun’s work (1997) Haider et al.

conducted a comparative study for fuzzy, statistical and

neural network methods (2000). In their experiments, each

user selected a password up to 7 characters length, typed it for

15 times and keystroke latency times were recorded. In the

http://dx.doi.org/10.1016/j.cose.2012.04.002
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test phase, users were given two chances for entry. The

trained feed forward backpropagation neural network has 6

input nodes (size of the feature vector), 4 hidden nodes and

a single output node. In the training phase, the output is set to

1.0 and the updated weight matrices are recorded as the

profile. In the test phase, when a new typing sample arrives,

the network is initialized with the recorded weight matrices

and is run with the sample vector as the input. If the calcu-

lated output is close to the desired value (within thresholds)

the sample is accepted as legitimate, otherwise it is accepted

as invalid. The neural network has provided an accuracy of

20% FNMR and 22% FRR e worst among the three detectors

tested. But when it is combined with fuzzy and statistical

methods, FMR and FNMR were reduced to 2% and 6%,

respectively.

Other than regular PC keyboards, keystroke verification

can also be applied in cellular phones, as shown in the study

by Clarke and Furnell (2007). In this study, to simulate mobile

phone environment, the keypad of a mobile phone was con-

nected to a PC in place of a keyboard. A total of 32 users were

asked to type two types of numbers: a four digit PIN and an

eleven digit telephone number. For each of the participants, 20

samples were used for training and 10 samples were used for

testing. The classification tests were performed by comparing

the samples of one valid user and the samples of other users

acting as impostors. Three types of neural networks were

employed in the experiments: Feed forward multilayer per-

ceptron (FF-MLP), Radial Basis Function Network and Gener-

alized Regression Neural Network (GRNN). For 4-digit PIN,

GRNN performed the best with 13.3% EER while FF-MLP was

the best for 11-digit phone number with 12.8% EER. In the

second test, each of 30 subjects was asked to write 30 text

messages using the numeric keypad. The subjects had to

press one or more times to each key for a single alphabetical

character. In this test, therewere no predefined inputs and the

subjects have written arbitrary messages. For alphabetical

input, the best average EER (17.9%) was achieved with FF-MLP

with gradual training, which is a neural network technique

that utilizes changing number of epochs to improve general-

ization (Napier et al., 1995).

As discussed above, there have been numerous attempts to

employ neural networks and other methods for keystroke

dynamics. The summary of the major results is provided in

Table 2. However, as we have discussed in the previous
Table 2 e Summary of the major experimental results of earlie

Source study Method

Bleha et al. (1990) Bayes classification

Joyce and Gupta (1990) Statistical comparison

Obaidat and Macchairolo (1993) Hybrid sum-of-products

Obaidat and Sadoun (1997) Backpropagation

Cho et al. (2000) Auto-associative

Haider et al. (2000) Backpropagation

Fan et al. (2004), p. 666e669 Support vector machine

Lee and Cho (2007) 1-LVQ

Loy et al. (2007) ARTMAP-FD

Cho et al. (2000) K-means

Clarke and Furnell (2007) Backpropagation

Giot et al. (2009) Support vector machine
section it is not possible to make a sound comparison using

these results because the tests are performed with different

datasets and under various different assumptions. Specifi-

cally, for the use of neural networks in Keystroke Dynamics,

making a performance comparison of different algorithms

with a reproducible common methodology still remains an

open problem.
3. Backpropagation neural networks

Neural networks are artificial learning systems modeled by

simulating human brain. An artificial neural network consists

of consecutive layers, which include self-computing neurons.

Each neuron accepts a set of inputs; computes aweighted sum

and applies a transfer function to the sum. The output is

transmitted to other neurons or to the environment.

Learning problem in training neural networks can be

considered as finding the optimal weight values that will

minimize the error, which is calculated as in Equation (1)

where tu represents the target that the unit u is expected to

show, ou represents the output for the unit u. The squared sum

of this difference gives the error for a single sample.

E ¼
X

ðou � tuÞ2 (1)

In the backpropagation algorithm, the error rate is

computed for each output neuron first. For each output

neuron, the gradient, which is the vector of partial derivatives

with respect to weight values for inputs, is computed as in (2).

DE ¼ ðdE=dw1; dE=dw2;.; dE=dwnÞ (2)

Then for each output neuron, each input weight value is

updated by adding the value Dwi computed as in Equation (3),

where Dwi represents the update value for the ith input for the

neuron, dE/dwi is the error gradient for the same input and m is

the learning rate.

Dwi ¼ m� dE=dwi (3)

The process is repeated for each neuron in the output layer.

Then, the update operation is carried for previous layers in

reverse order. The crucial point here is that the activation

function must be differentiable in order to be able to calculate

the gradient.
r work for keystroke dynamics.

Text length FMR (%) FNMR (%)

31 2.1 8.1

N/A 0.25 16.6

15 97.8% classification success

7 0 0

7 1.0 0

7 22 20

10/8 2/10 10/10

6e10 0.43 0.43

N/A 14.94 14.94

7e9 3.8 3.8

11 12.8 12.8

16 10.30 10.30
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There are different choices for training a neural network to

minimize the error rate. In our study, we choose 12 different

training algorithms proposed in the literature for back-

propagation neural networks. In the following subsections we

give brief descriptions of the algorithms. The detailed expla-

nation of these algorithms can be found in (Beale et al., 2010).

3.1. Gradient descent backpropagation

Gradient descent backpropagation is the batch steepest

descent algorithm. By using backpropagation, the error is

passed through layers in reverse mode. At each layer, the

gradient of the error is computed and for each weight value of

each neuron the update rule is given in Equation (4) whereDwij

is the update value for jth input of ith neuron, gij is the gradient

for the input.

Dwij ¼ m� gij (4)

3.2. Gradient descent with momentum
backpropagations

In this algorithm, gradient descent is computed at each iter-

ation. The weights are updated as in Equation (5) Dwn repre-

sents latest weight update, Dwn � 1 represents previous weight

update, a is momentum constant and g is the gradient.

Dwn ¼ a� Dwn�1 þ m� ð1� aÞ � g (5)

This method makes a compromise between the latest

gradient and previous search direction, therefore reducing

the probability of getting stuck to local minima. Momentum

constant takes value between 0 and 1. For the values close

to 0, the method approximates gradient descent algorithm.

For the constant values close to 1, the effect of the latest

update gradually decreases, thereby reduces the training

speed.

3.3. Gradient descent with adaptive learning rate
backpropagations

In this algorithm, gradient descent is computed at each iter-

ation. The weights are updated as in Equation (6), where Dw

represents latest weight update.

Dw ¼ m� g (6)

The learning rate changes adaptively. If error decreases

toward the goal, learning rate is increased. If it increasesmore

than the specified threshold, the update is canceled and

learning rate is decreased.

3.4. Gradient descent with momentum and adaptive
learning rate backpropagation

In this algorithm, gradient descent is computed at each iter-

ation. The weights are updated as in Equation (7).

Dwn ¼ a� Dwn�1 þ m� a� g (7)

If error decreases toward the goal, learning rate is increased.

If it increases more than the specified threshold, the update is

canceled and learning rate is decreased.
3.5. Conjugate gradient backpropagation with
Polak-Ribiére updates

In this algorithm, gradient descent is computed at each iter-

ation. The weights are updated as in Equation (8).

Dwn ¼ bn � Dwn�1 � gn (8)

The parameter bn is calculated as in (9) where gn � 1 repre-

sents the previous gradient.

bn ¼
��

gn � gn�1

�T�gn

�.
norm

�
g2
n�1

�
(9)

3.6. Conjugate gradient backpropagation with Powell-
Beale restarts

In this algorithm (Powell, 1977), gradient descent is computed

at each iteration. The weights are updated as in Equation (10).

Dwn ¼ bn � Dwn�1 � gn (10)

The parameter bn is calculated as in (11).

bn ¼
��

gn � gn�1

�T�gn

�.
normðg2

n�1Þ (11)

The search direction is reset to the negative of the gradient

when the case (situation) as in Equation (12) exists.

��gT
n�1gn

��>¼ 0:2
��gn

��2
(12)

3.7. Conjugate gradient backpropagation with
Fletcher-Reeves updates

In this algorithm, gradient descent is computed at each iter-

ation. The weights are updated as in Equation (13).

Dwn ¼ bn � Dwn�1 � gn (13)

The parameter bn is computed as in Equation (14).

bn ¼ norm
�
g2
n

�
=norm

�
g2
n�1

�
(14)

3.8. Scaled conjugate gradient backpropagations

Conjugate gradient algorithms require line search optimiza-

tion at each iteration. Scaled conjugate algorithm is faster

than other conjugate gradient algorithms since it avoids

computationally expensive line search per iteration using

a step size scaling mechanism (Moller, 1993).

3.9. BFGS quasi-Newton method

Newton’s optimization method, which converges faster than

conjugate gradient methods, requires Hessian matrix, which

is a square matrix whose elements are second order partial

derivatives of the activation function but is complex and

expensive in terms computation. Family of algorithms that

uses approximation of Hessian matrix is called quasi-Newton

methods. BFGS algorithm (Broyden, 1970; Fletcher, 1970;

Goldfarb, 1970; Shanno, 1970) which was independently

developed by four scientists is one of them.

In this method the search direction is initialized to the

negative of the gradient. In succeeding iterations, the weight

http://dx.doi.org/10.1016/j.cose.2012.04.002
http://dx.doi.org/10.1016/j.cose.2012.04.002
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updates are calculated as in Equation (15) where H stands for

the approximate Hessian matrix.

Dw ¼ �H=g (15)

3.10. One-step secant backpropagation

This algorithm (Battiti, 1992) can be considered as a hybrid

combination of BFGS approach and conjugate gradient algo-

rithms. The algorithm does not store Hessian matrix, instead,

it assumes the identity matrix approximates the previous

Hessian. At each iteration, weight values are updated as in

Equation (16) where a and b are constants.

Dwn ¼ �gn þ a� Dwn�1 þ b� gn�1 (16)

3.11. Resilient backpropagations

Resilient backpropagation is a batch learning method and is

faster than gradient descent algorithms (Riedmiller and

Braun, 1993). The main objective of the algorithm is to elimi-

nate the harmful effect of the magnitude of the partial

derivative. Therefore, instead of taking the partial derivative

itself, only its sign is used to determine the step size forweight

update. If the sign of the latest derivative is same as the

derivative at the previous step, then the step size is increased.

If the signs are different, meaning that the latest update is

large and cause to jump over a local minimum, the update

step size is reduced. Once, the step size is determined, the

weight update takes the opposite of the sign of the derivative

and is added to the weight values.

3.12. LevenbergeMarquardt backpropagation

LevenbergeMarquardt method is an iterative algorithm that

approximates the global minimum for the error functions,

which are expressed as sum of squares (Marquardt, 1963). The

algorithm is successful for non-linear least squares problems,

and hence ideal for training feed forward neural networks.

This algorithm stands between gradient descent methods

and Newton optimization. But, instead of calculating Hessian

matrix directly as in Newton method (which is complex in

computation), it is approximated as in Equation (17) where J

stands for Jacobian matrix containing the first order partial

derivatives of the output errors with respect to weights and

biases and is less computation expensive relative to Hessian

(Hagan and Menhaj, 1944).

H ¼ JT J (17)

The gradient is computed as in Equation (18) where e is the

error vector.

g ¼ JT e (18)

The weight updates are computed as in Equation (19) where

I stands for identity matrix and m is a scalar coefficient.
User ID Usage 
Flag

Impostor 
Flag
Dw ¼ �
JT Jþ mI

��1
JT e (19)
4. Experiments

We evaluate the performance of different training algo-

rithms of backpropagation neural networks introduced in

Section 3 for keystroke based verification. In our experi-

ments, we use the benchmark dataset that was collected in

the study by Killhoury and Maxion (2009). The dataset

includes 400 samples from 51 participants. A shared pass-

word (i.e., “.tie5Roanl”) was assigned for all users, and

together with the enter key, keystroke signature has 11

keystrokes. The feature set includes keystroke latency

(consecutive keydown times, keyupekeydown times) and

keystroke duration (hold times for each keystroke) and

consists of 31 timing features in total.

We implement and test the algorithms using MATLAB

Programming Environment (The MathWorks Inc, 2008). For

our tests, we made a slight modification to the original

dataset, containing alphabetic characters, which is prob-

lematic to place in a matrix in MATLAB environment. We

remove the informative header and rewrite the first

column containing the alphanumeric subject identifiers in

numerical form. We remove the session and repetition

number columns from the dataset and put two columns

(usage and impostor flags) to discriminate training, test,

and impostor samples in the dataset. We provide the

MATLAB script used to process the dataset together with

the modified dataset (Uzun, 2011) for full transparency of

our test procedure.

In our experiments, first half of the samples is used for

training and the second half is used for tests. In addition, first

five samples in the second half of each user’s dataset were

used for simulating impostor login attempts for other users.

By adopting the earlier evaluation methodology and by using

the publicly accessible dataset, a valid comparison of our

experimental results both with the preceding work (Killhoury

and Maxion, 2009) as well as with potential future studies, is

facilitated.

Each of the neural networks that we use consists of three

layers. The input layer has 31 neurons corresponding to 31

features, hidden layer has 20 neurons, and the output layer

consists of a single neuron in parallel to the configuration in

(Killhoury and Maxion, 2009). Maximum number of epochs is

set to 50 and learning rate is 0.1.

In order to perform the experiments, we develop a public

MATLAB library (Uzun, 2011), which can also be used for any

other biometric dataset as long as it conforms to the following

requirements:

� The data is in tab separated text file (tsv) format.

� Each row represents a typing (feature) sample.

� Each row is in the following record structure:
Feature 
1

Feature 
2

… Feature 
N
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Table 3e The error results achievedwith differentweight update functions using only positive data. (bp: backpropagation).

Acronym Training algorithm Average EER with fix
initial weights (%)

Average EER with random
initial weights (%)

gdb Gradient descent bp. 41.89 27.57

gdm Gradient descent with momentum bp. 37.83 23.27

gda Gradient descent with adaptive learning rate bp. 49.55 27.05

gdma Gradient descent with momentum and adaptive learning rate bp. 34.99 23.76

cgpr Conjugate gradient bp. with Polak-Ribiére updates 62.10 43.62

cgpb Conjugate gradient bp. with Powell-Beale restarts 63.49 42.17

cgfr Conjugate gradient bp. with Fletcher-Reeves updates 71.94 58.09

scg Scaled conjugate gradient bp. 43.44 25.91

bfgs BFGS quasi-Newton method 57.21 40.58

oss One-step secant bp. 51.22 38.52

rbp Resilient bp. 54.76 49.72

lmb LevenbergeMarquardt bp. 54.00 45.70

Table 4e The error results achievedwith differentweight
update functions using both positive and negative data
(bp: backpropagation).

Acronym Training algorithm Average
EER (%)

gdb Gradient descent bp. 83.06

gdm Gradient descent with momentum bp. 51.45

gda Gradient descent with adaptive learning

rate bp.

49.65

gdma Gradient descent with momentum and

adaptive learning rate bp.

50.43

cgpr Conjugate gradient bp. with Polak-Ribiére

updates

25.34

cgpb Conjugate gradient bp. with Powell-Beale

restarts

20.30

cgfr Conjugate gradient bp. with Fletcher-

Reeves updates

21.13

scg Scaled conjugate gradient bp. 18.88

bfgs BFGS quasi-Newton method 10.97

oss One-step secant bp. 20.55

rbp Resilient bp. 27.54

lmb LevenbergeMarquardt bp. 8.07

c om p u t e r s & s e c u r i t y 3 1 ( 2 0 1 2 ) 7 1 7e7 2 6 723
� The description of record fields are presented as follows:

- User ID:An integer identifier that is unique for each user

or participant.

- Usage Flag: An integer flag that is used to discriminate

training and test samples. The value must be set to 1 for

training samples and 2 for test samples.

- Impostor Flag: An integer flag that is used for impostor

test samples. The value must be set to 1 if the row is

used as an impostor test sample for other users and

0 otherwise.

- Feature 1: First feature value.

- Feature 2: Second feature value.

- Feature N: Last feature value.

In the first stage of our tests, for each user, the network is

trained using only positive examples to produce a single,

binary output, which is þ1. Using receiver operating charac-

teristic curves (Mayoue, 2007), EER is computed for each user.

Then, we compute the average of the EER values for each

weight update algorithm. We make experiments with two

different initialization methods. First, we initialize all the

weights to 0.1 as in (Killhoury and Maxion, 2009) and train the

networks using 12 different backpropagation algorithms.

Then, we perform the tests with the same parameters, with

the exception that the initial weights were chosen randomly.

In order to reduce the randomness in the results for random

weight initialization, we run the second group of tests for 10

times for each algorithm and measure the average of the

results of these test runs (we include all 51 users in the

calculation of average EER values, none of the users are dis-

carded as outlier in the calculation of average values). The

calculated average equal error rates for the algorithms are

listed in Table 3.

When only positive data is used for the training of neural

networks with constant initial weights, the equal error rates

are higher than 40 percent except two algorithms ( gdm and

gdma). Even for these two algorithms, the error rates are high

(37.83% and 34.99%) and obviously unacceptable, considering

that even a random verifier can make verification with 50%

success. When random weight initialization scheme is

preferred, gradient descentwithmomentumbackpropagation

performs the best with 23.27% equal error rate, which is much

better than the rate with constant weights, but still much
worse than the best algorithm (with 9.6% error rate) in

(Killourhy and Maxion, 2009). Another observation is that

scaled conjugate gradient backpropagation and family

gradient descent of backpropagation algorithms perform

better than the rest of the algorithms with equal error rates

less than 30 percent with random initialization.

In the second stage of our tests, each network is trained

using both positive and negative examples to produce

a single binary output, which is þ1 for the valid user and �1

for all other users. When training the neural network for

a single user, we use the first half of the samples (the first

200) of that particular user as positive examples and the first

halves (the first 200) of the keystroke samples of all the other

(50) users as negative examples, making 200 positive samples

versus 10000 negative examples in total. The weights were

initialized randomly. We repeat this procedure for all the 51

users participated in the tests. As in the first stage, for each

user we run the tests for ten times for each of the 12 training

algorithms. We present the mean EER for each algorithm in

Table 4.

http://dx.doi.org/10.1016/j.cose.2012.04.002
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Fig. 1 e Box plot diagram showing the distribution of equal

error rates in the sample population (Acronyms for the

algorithms are explained in Table 3).
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When we analyze the test results in Table 4, we see that

family of gradient descent methods provide performance

results no better than a random detector and conjugate

gradient methods perform better than gradient descent algo-

rithms with equal error rates ranging between 18.88% and

25.34%. The accuracy of resilient and one-step secant back-

propagation algorithms is close to the accuracy of conjugate

gradient family. BFGS quasi-Newton method and Lev-

enbergeMarquardt backpropagation are the most promising

algorithms with the average equal error rates of 8.07% and

10.97%, respectively.

The average EER for the neural network trained with the

LevenbergeMarquardt algorithm (8.07%) is better than the

best EER (9.6%) reported in (Killhoury and Maxion, 2009). As

a result, we conclude that when negative examples are used

for training, neural networks provide better performance

results than the other methods for keystroke verification.

In order to make a sound comparison between the results

of the algorithms, we compute 95% confidence intervals for

differences of means for the LevenbergeMarquardt algorithm

and the remaining training algorithms, which are listed in

Table 5. Among these intervals, only one of them (BFGS quasi-

Newton method) crosses over zero, therefore, we can state

that LevenbergeMarquardt algorithm is significantly better

than all the remaining 10 algorithms.

Distribution of errors for different participants is also

a significant factor when evaluating the success of a system.

The box plot diagram in Fig. 1 illustrates the distribution of

EER values for 51 users. For each training algorithm, the

diagram divides the EER values into four equal parts with

three separating points: lower quartile, median and upper

quartile. Horizontal lines in the middle of the boxes show the

median EER and the box edges represent upper and lower

quartiles. One fourth of the EER values lay below the lower

quartile, another fourth is between lower quartile and the

median, the third is between median and upper quartile and

the last one is above the upper quartile. The whiskers extend
Table 5 e Confidence intervals (95%) for differences
between the mean of LevenbergeMarquardt algorithm
and other training algorithms.

Algorithm Confidence
interval for
differences
of means

Gradient descent bp. 69.41 4 80.57

Gradient descent with momentum bp. 37.79 4 48.96

Gradient descent with adaptive learning rate bp. 36.00 4 47.16

Gradient descent with momentum and adaptive

learning rate bp.

36.78 4 47.94

Conjugate gradient bp. with Polak-Ribiére updates 11.69 4 22.85

Conjugate gradient bp. with Powell-Beale restarts 6.65 4 17.81

Conjugate gradient bp. with Fletcher-Reeves

updates

7.47 4 18.64

Scaled conjugate gradient bp. 5.23 4 16.39

BFGS quasi-Newton method L2.69 4 8.47

One-step secant bp. 6.89 4 18.05

Resilient bp. 13.89 4 25.05
the boxes with 1.5 times the interquartile range from the ends

of the boxes. The plus signs stand for the outlier elements

which do not fit within boxes or whiskers.

In Fig. 1, the error rates for gradient descent algorithms are

scattered almost randomly above or around 50%, confirming

that they are no different than a random verifier. The upper

quartiles for the conjugate gradient methods, one-step secant

backpropagation and resilient backpropagation are signifi-

cantly lower than 40%, which means that they provide better

accuracy than random verifier at least 75% of the users. The

error rate corresponding to the lower quartile is much lower

for the BFGS quasi-Newton and LevenbergeMarquardt back-

propagation than the other algorithms, as expected. Another

observation from Fig. 1 is that for the neural network trained

with LevenbergeMarquardt backpropagation, even for outlier

participants (typically inconsistent typers), the error rates are

below 30%.

Besides the type of training algorithm, there are other

considerations for training a neural network. One such issue

is the learning rate parameter, which is the proportion of the

adjustment to the weight values updated by each learning

step. The larger the learning rate, the greater the size of steps

toward optimum, thereby enabling faster learning if the

variation in the input data is small. However, if the variation

in the training set is high, a large learning rate may lead to

oscillations in the error thereby preventing the algorithm to

find the global optimum. Another parameter of a neural

network is the number of neurons in each layer. Since the

number of neurons in the first layer must be equal to the

number of inputs and theremust be a single neuron in the last

layer because of the nature of the problem, the only layer that

can be altered is the hidden (middle) layer. In the experiments

above, the learning rate was fixed to 0.1 and the number of

neurons in the hidden layer was 20. As an extension to our

work, we investigate the effects of changing these parameters

on the EER value for LevenbergeMarquardt backpropagation

algorithm. We present the results in Table 6. As seen from

http://dx.doi.org/10.1016/j.cose.2012.04.002
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Table 6 e Effects of changing the learning rate and
number of hidden layers on the EER value for
LevenbergeMarquardt backpropagation algorithm.

Number of neurons
in the hidden layer

Learning rate

0.0001 0.001 0.01 0.1

10 8.26 8.52 8.46 8.21

20 8.75 7.73 8.62 8.07

30 7.87 7.76 8.04 7.99

40 8.56 7.90 8.19 7.74

50 8.42 7.95 8.18 8.28
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Table 6, EER value can be reduced slightly by fine-tuning the

parameters (The minimum EER, 7.73%, is achieved with 20

neurons in the hidden layer and with the learning rate of

0.001).

In the above tests, all available negative examples were

used for the training. More precisely stated, when training the

neural network for a single user, we used 200 training samples

of that particular user as positive data and 10000 training

samples (200 samples for each of 50 users) as negative data. In

order to examine possible scenarios in which negative sample

set is available for smaller impostor population sizes, as

a third step of our tests we train the neural network with

different impostor population sizes ranging from 5 to 50 users

(with increments of 5) using the best-performing algorithm

(LevenbergeMarquardt backpropagation). For each impostor

population size p, we train the network using the samples of

first p users in the original dataset (excluding the subject user)

as negative samples. The corresponding change in EER value

is shown in Fig. 2. The maximum EER is obtained as 16.63%

when only 5 training impostors are used. EER reduces as

impostor population size increases.

Lastly, we analyze the effect of changing the training set

size on keystroke verification. In previous work, keystroke

samples of each user were divided equally into two halves for

training and test (200 for each) andwe complywith this rule in
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Fig. 2 e Equal error rates corresponding to impostor

population sizes used in training.
our earlier analysis. Increasing the size of the training set may

improve the learning capability of the network and thus

reduce the error rate. To test this hypothesis, we repeat our

tests using the first 300 samples of the keystroke set of each

user (instead of 200) for training and the remaining 100

samples for testing. There is no other change in these tests

(during the testing, we use the first five samples in the new

testing dataset as impostor login attempts). For Lev-

enbergeMarquardt backpropagation, the average equal error

rate is reduced from 8.07% to 6.89%, which shows that greater

number of samples used in training provides better prediction

accuracy.
5. Conclusion

To advance the field of Keystroke Dynamics, the importance

of shared data and reproducible test results cannot be over-

emphasized. Killourhy and Maxion’s evaluation work (2009)

and accompanying dataset is seminal in this respect.

Motivated by their poor performance results reported in

Killourhy and Maxion’s work (2009), we revisit neural

networks for the problem of keystroke dynamics. Using the

same dataset and the evaluation methodology, we show that

when negative examples are used to feed a backpropagation

neural network and if a suitable training algorithm is applied,

backpropagation neural networks can outperform all the

other detectors evaluated in the aforementioned study. Our

tests are made publicly available (see Uzun, 2011). Therefore,

we conclude that backpropagation neural network is a viable

alternative for identifying individuals based on Keystroke

Dynamics data.

Another important result of our experiments is that for

keystroke verification the performance of artificial neural

networks significantly depends on the configured training

algorithm. An inappropriate algorithm selection may give an

error rate as high as a random verifier whereas with a proper

algorithm the best performance result could be achieved. We

should also note that there may still be room for further

improvement.

There are several promising future directions in the field.

We point out only one of them here. As smart phones are

increasingly popular, security becomes a growing concern for

these portable devices, which are subject to loss and theft.

Although recent studies start investigating keystroke

dynamics for these devices, to the best of our knowledge,

currently there is no publicly available dataset collected for

them. A public dataset could provide a base for making

a comprehensive study for keystroke based verification on

mobile devices.

Acknowledgment

We would like to thank TUBITAK (The Scientific and Tech-

nological Research Council of Turkey) for providing financial

support to Yasin Uzun during his PhD study. We thank Musa

Atas‚ , Fatih Kaya and anonymous reviewers for their valuable

comments on the manuscript.

http://dx.doi.org/10.1016/j.cose.2012.04.002
http://dx.doi.org/10.1016/j.cose.2012.04.002


c om p u t e r s & s e c u r i t y 3 1 ( 2 0 1 2 ) 7 1 7e7 2 6726
r e f e r e n c e s

Battiti R. First and second order methods for learning: between
steepest descent and Newton’s method. Neural Computation
1992;4(2):141e66.

Beale MH, Hagan MT, Demuth H. Neural network toolbox 7 user’s
guide. Natick, MA: The MathWorks; 2010.

Bleha S, Hussien B, Slivinsky C. Computer access security systems
using keystroke dynamics. IEEE Transactions on Pattern
Analysis and Machine Intelligence 1990;12(12):1217e22.

Broyden CG. The convergence of a class of double-rank
minimization algorithms. Journal of the Institute of
Mathematics and Its Applications 1970;6:76e90.

Bryan WL, Harter N. Studies in the physiology and psychology of
the telegraphic language. Psychological Review 1994;4(1):
27e53.

Cho SC, Han CDH, Han DH, Kim HH. Web-based keystroke
dynamics identity verification using neural network. Journal
of Organizational Computing and Electronic Commerce 2000;
10(4):295e307.

Clarke NL, Furnell SM. Authenticating mobile phone users using
keystroke analysis. International Journal of Information
Security 2007;6:1e14.

Fan P, Sang Y, Shen H. Novel impostors detection in keystroke
dynamics by support vector machine. In: Proceedings of
parallel and distributed computing: applications and
technologies; 2004. Singapore.

Fletcher RA. New approach to variable metric algorithms.
Computer Journal 1970;13:317e22.

Giot R, El-Abed M, Rosenberger C. GREYC keystroke: a benchmark
for keystroke dynamics biometric systems. In: IEEE third
international conference on biometrics: theory, applications
and systems (BTAS); 2009a. Washington DC, USA.

Giot R, El-Abed M, Rosenberger C. Keystroke dynamics with low
constraints SVM based passphrase enrollment. In: IEEE third
international conference on biometrics: theory, applications
and systems (BTAS); 2009b. Washington DC USA.

Goldfarb DA. Family of variable metric updates derived by
variational means. Mathematics of Computation 1970;24:23e6.

Green DM, Swets JA. Signal detection theory and psychophysics.
New York: Wiley; 1996.

Hagan MT, Menhaj M. Training feed-forward networks with the
Marquardt algorithm. IEEE Transactions on Neural Networks
1944;5(6):989e93.

Haider S, Abbas A, Zaidi AK. A multi-technique approach for user
identification through keystroke dynamics. In: Proceedings of
IEEE international conference on systems, man and
cybernetics. Canada: Montréal; 2000. p. 1336e41.
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