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Server-side authenticated key-establishment protocols are characterized by placing a heavy workload on
the server. We propose LAKE: a new protocol that enables amortizing servers’ workload peaks by moving
most of the computational burden to the clients. We provide a formal analysis of the LAKE protocol un-
der the Canetti-Krawczyk model and prove it to be secure. To the best of our knowledge, this is the most
computationally efficient authenticated key-establishment ever proposed in the literature.
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1. INTRODUCTION

Secure Web browsing was introduced in the late 90s leveraging the HTTPS protocol
[Rescorla 2000]. In the beginning, secure Web transactions were mainly enforced by
banks, governments, or more generally, by all those activities that directly deal with
the user’s privacy and security.

In the last few years, users’ privacy has been raised as a major issue for many other
online services [Romanosky et al. 2011]; for example: social media, location dependent
services and simple Web searches are now adopting the HTTPS protocol. Secure Web
browsing guarantees the user’s privacy and the server’s authenticity by means of the
TLS/SSL protocol [Dierks and Allen 1999]. In particular, the TLS/SSL protocol is char-
acterized mainly by two phases: the establishment of a secret master key between the
client and the authenticated server, and the subsequent encryption of all the trans-
fered data. While confidentiality can be easily guaranteed leveraging both the newly-
established master key and a symmetric encryption algorithm such as AES [Schaad
and Housley 2002], the initial key-establishment is still a challenge for server-side
performance [Apostolopoulos et al. 2000; Kant et al. 2000].

A server-side authenticated key-establishment is a set of procedures that eventually
allow the client and the server to share a secret key and the server to be authenticated
at the client. The challenge of such a protocol is at the server side [Zhao et al. 2005]:
in particular, the server is requested to perform a heavy cryptographic operation for
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5:2 K. Bicakci et al.

each new client, and with the increase of the number of the clients, performing such
key-establishment may become computationally intensive.

Classical solutions involve specialized hardware, e.g. SSL accelerator [Chou 2002].
SSL accelerator cards can be installed into regular commodity server hardware and
reduce the CPU-intensive parts of the SSL transaction. Such a solution turns out to
be effective in cutting down the server workload, but this specialized hardware is still
expensive. Nevertheless, SSL accelerators are currently the most effective solution
[Thiruneelakandan and Thirumurugan 2011] to the increasing requests for Web se-
curity from Internet users. To guarantee higher degrees of data security, longer key
lengths have been introduced, which in turn, means more load on TLS/SSL servers.
Eventually, the performance of the TLS/SSL handshake directly affects the number of
clients that can be served simultaneously.

Contribution. This article introduces LAKE, a new server-side authenticated key-
establishment protocol that enables the server to establish a new authenticated and
secure communication channel by computing only one asymmetric encryption. To the
best of our knowledge, LAKE is the most efficient solution in terms of server workload.
We provide a detailed formal analysis of LAKE under the Canetti-Krawczyk model and
proved it to be secure. We show the results of a real client-server implementation, and
we compare the performance of our solution with previously published results. Finally,
we show how to integrate the proposed protocol with a puzzle-based algorithm in order
to make it robust to the denial of service attack.

2. RELATED WORK

Rebalancing the TLS/SSL server workload has been studied in two previous works:
Bicakci et al. [2006] and Castelluccia et al. [2006]. The latter proposed the so called
Client-Aided RSA (CA-RSA), which takes advantage of the Chinese Remainder The-
orem in order to shift some computational burden from the server to the client. The
authors provided measurement results from an experimental setup based on OpenSSL
library: they determined the upper bound on the number of SSL requests by measur-
ing the number of RSA decryptions a server can perform within a given time frame.
Their results showed CA-RSA speedups on the server side of 11.33 and 19.12 times for
RSA-1024 and RSA-2048, respectively.

Although their work definitely improves the server performance, Bicakci et al. [2006]
prove that it is possible to accomplish a server-side authenticated key-establishment
even more efficiently on the server side. Such work leverages Online/Offline signatures
in order to shift the greatest part of the computational workload offline, i.e., when the
server is idle, or even to other machines. On the other side, the online computational
workload adds up to only one RSA public key encryption and therefore is fast and effi-
cient. Their preliminary results come from the OpenSSL speed-test suite and suggest
that the server side can achieve speedups of 16 and 33 times using RSA-1024 and
RSA-2048, respectively.

One-time signatures, introduced even before RSA signatures, allow signing only one
message per one public key [Lamport 1979; Rabin 1978]. The scheme has been sub-
sequently improved, allowing multiple signatures per one public key [Merkle 1987].
Lamport developed a framework to obtain a one-time digital signature from a one-way
hash function [Lamport 1979]. The previous approach has been revisited by Even et al.
[1989]: one-way functions are obtained from the DES encryption algorithm [Des 1977]
and used in order to map blocks of the private key into corresponding blocks of the
public key, and finally, the message is signed by revealing the corresponding blocks
of the private key. In its basic construction, the previous approach involves an online
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computation overhead of one only DES encryption and a transmission overhead of a
3k length signature for a message of k bits.

Shamir and Tauman [2001] subsequently proposed an improved Online/Offline
signature scheme. The authors proposed the hash-sign-switch signature based on
chameleon signatures, which in turn leverages trapdoor hash functions. Chameleon
signatures are signatures that commit the signer to the contents of the signed mes-
sage but do not allow the recipient of the signature to convince third parties that a
particular message was signed, since the recipient can change the signed message to
any other message of his choice. Authors leveraged such behavior in order to sign of-
fline a temporary message and resign the actual one, leveraging the trapdoor of the
hash function. The online computational overhead sums up to 0.1 modular multiplica-
tion while the transmission overhead is constituted by a random number and a digital
signature.

Another interesting solution to online/offline signature comes from Guo and Mu
[2008]. Authors proposed an optimal message signing procedure, namely O-3 signa-
ture, that does not need online computations. On the other side, the baseline approach
needs the transmission of both n signatures and a random number. Moreover, the
authors propose to leverage batch verification signature, i.e., where the cost for n signa-
tures of different messages is less than conducting them one-by-one. Signature aggre-
gation, i.e., where n different signatures on different messages can be aggregated into
a single signature. They observe that a short provably-secure signature scheme satis-
fying the aforementioned properties can be found in Boneh et al. [2001]. Adopting such
a scheme allows one to sign a message without online computations and only 320 bits
as communication overhead. Nevertheless, batch verification signature, introduced by
Fiat [1997] assumes nonstandard RSA procedures, and therefore, it is not compliant
with current PKI infrastructures.

Recently, Yao and Zhao [2013], Ming and Wang [2010], and Liu et al. [2010] have
shown that online/offline signatures can be applied to resource constrained devices,
such as smart cards and wireless sensor networks, to effectively implement secure
signature schemes.

3. PROBLEM STATEMENT

We consider a scenario constituted by a set of clients that want to establish a secure
and authenticated access to a remote service. Figure 1 shows the reference scenario
with the involved entities. Each client {C1, . . . , C5} wants to access one of the applica-
tion servers in the cloud. This is usually achieved in two steps, during the first step the
authentication server (Auth Server, hereafter Server) recognizes and grants the client
the rights to access the application servers in the cloud (App Server), while during the
second phase, the client directly accesses the application servers. In particular, each
client-server pair establishes an authenticated secret shared key, hereafter Ks, to be
used to secure the subsequent communications. Authentication is achieved by using
a public key infrastructure (PKI). The client can always verify the public key authen-
ticity of the server by leveraging a trusted third party, i.e., a certification authority,
hereafter CA. In the following, we assume that the server public key, hereafter PK, is
signed by CA (PK) and the client can always verify PK authenticity leveraging both
CA and PK.

Generally speaking, the most accepted solution to this problem is constituted by
the TLS/SSL handshake. Unfortunately, TLS/SSL is not efficient from the server-side
point of view. This is a serious problem when the server is resource constrained
[Potlapally et al. 2006; Shin et al. 2009], or more generally has to deal with many
clients [Coarfa et al. 2006]. In fact, as it will be clear in the following, TLS/SSL
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5:4 K. Bicakci et al.

Fig. 1. Reference scenario. Clients need to be granted by the authentication server (Auth Server) in order
to subsequently access the application servers (App Server).

handshake involves computationally heavy cryptographic procedures (at the server
side) that may be difficult to deal with when the number of clients is high [Qing and
Yaping 2009; Shacham and Boneh 2001]. Moreover, we observe that other scenarios
are affected by the performance of the TLS/SSL authentication: e.g., Shen et al. [2012]
studied the impact of TLS on SIP server performance and showed that using TLS
can reduce the performance by up to a factor of 17 compared to the typical case of
SIP-over-UDP.

Adversary model. We envisage a powerful adversary ADV able to control any of the
node in the network of Figure 1. ADV can inject new messages into the network, mimic
one of the existing clients, and finally eavesdrop all the exchanged messages. The ad-
versary cannot gain control of the server, but can compromise one or more clients in
order to mount a denial of service attack on the server, i.e., running multiple LAKE
protocol instances on the same server.

Although our solution can be easily extended in order to authenticate both the client
and the server, in this work we focus on authenticating only the server side.

3.1. Definitions

Table I shows a resume of the symbols and acronyms used throughout this article.

3.2. TLS/SSL Handshake

TLS/SSL is the most widely used protocol to ensure secure communication between a
client and a server; more precisely, in this work we are interested in the initial RSA-
based handshake phase, which has the goal of establishing a secret master key to be
used during the TLS/SSL session.

The TLS/SSL initial key-establishment is based on RSA procedures, i.e., it leverages
RSA asymmetric cryptographic primitives in order to securely converge to a shared
secret key between the client and the server.

Let (SK, PK) be a pair of private and public keys, respectively, in the RSA model,
obtained by the server running the algorithm G, i.e., (SK, PK) ← G. In the following,
we assume that the client can verify the authenticity of PK relying on a trusted third
party (CA belonging to a PKI).

ACM Transactions on Internet Technology, Vol. 13, No. 2, Article 5, Publication date: December 2013.
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Table I. Notation Summary

CA Certification authority
PK Server RSA Public/Verification Key
SK Server RSA Private/Signing Key
pK Client RSA Public Key
sK Client RSA Private Key
Ks Secret master key
pk OTS verification keys
sk OTS signing keys
G, S, V RSA-based signature scheme
g, s, v OTS-based signature scheme
H(◦) SHA-1 hash function
{◦}PK RSA-based encryption
{◦}SK RSA-based decryption
SSK (◦) RSA-based signing procedure
PK Digital signature of the server public key PK
V(m, �) RSA-based verification procedure

for the message m with signature �

l Symmetric key length
L RSA Private key length

Fig. 2. A sketch of the TLS/SSL handshake.

Let {x, rc, rs} $←− Z be random integers: we use notation x
$←− Z in order to gener-

ate a pseudo-random value from Z and assign it to x. Let also {◦}PK and {◦}SK be
the RSA-based encryption/decryption procedures, respectively, such that {{x}PK}SK =
{{x}SK}PK = x. A sketch of the TLS/SSL key-establishment protocol is depicted in
Figure 2. The handshake protocol is initiated by the client, which generates rc and
sends it to the server (client hello packet). Subsequently, the server does the same:
generates rs and sends it back to the client together with its own certificate (server
hello packet), i.e., the public key PK and a digital signature of it (PK) signed by the
trusted third party CA. In this way the client can leverage PK in order to verify the au-
thenticity of PK with CA. Subsequently, the client generates the premaster key x and
computes the final secret key Ks hashing all together the previous random values, i.e.,
Ks = H(x, rc, rs), where H(◦) is a one-way hash function such as SHA-1 [Eastlake and

ACM Transactions on Internet Technology, Vol. 13, No. 2, Article 5, Publication date: December 2013.
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Table II. RSA-Based
Computation Performance

RSA Decryption Slow
RSA Encryption Fast
RSA Signing Slow
RSA Verifying Fast

Jones 2001]. Now, the client sends the premaster key x encrypted with the server public
key PK to the server. Finally, the server retrieves x by means of SK, and computes the
shared secret key Ks, hashing all the previous random values x, rc, and rs, respectively.

We highlight how such a key-establishment protocol guarantees server-side authen-
tication because the server provides the client with its own certificate, i.e., < PK, PK >,
and at the other side, the client verifies the authenticity of the received PK (from the
purported server) with a trusted CA.

3.3. TLS/SSL Handshake Workload

In order to estimate the workload of the TLS/SSL key-establishment, we analyze
the computational load of the most important cryptographic steps in the protocol of
Figure 2. Starting from the server side, we observe a hash computation and an RSA
private key decryption; while at the client side, we observe a hash computation and a
public key encryption. Moreover, the client has to perform a signature verification in
order to trust the public key PK received from the server.

Although we will discuss the performance issues in detail later, Table II provides
a simple comparison among the most common cryptographic operations provided by
the RSA algorithms. Generally speaking, we consider as fast, the operations that in-
volve short exponents, such as the public key, while we consider as slow, the operations
that involve large exponents, such as the private key. Therefore, RSA decryption and
signing, which involve private key exponentiations are slow, while RSA encryption and
verification, which involve public key exponentiations are fast.

Recalling Figure 2, we observe how the client workload is negligible, in fact it sums
up to a hash computation, an RSA signature verification, and finally, a public key
encryption. On the other side, the server workload is high; in particular, the server
has to perform an RSA private key decryption for each TLS/SSL key-establishment.

4. OUR SOLUTION IN BRIEF

In this work we propose LAKE, a new server side authenticated key-establishment
protocol that does not require any online heavy crypto operations. In our solution, the
server performs only one online RSA encryption, while all the heavy operations can
be precomputed offline. The key point of our solution relies on reversing the standard
TLS/SSL handshaking, allowing the server to generate the secret key Ks, and sending
it to the client encrypted with the client public key, hereafter pK. Nevertheless, such
an approach has two main drawbacks: (1) the server is not authenticated and (2) the
online RSA encryption performed by the server can be leveraged by malicious clients
that want to mount a denial of service (DoS) attack on the server.

As it will be clear in the following, in order to authenticate the secret key Ks en-
crypted with the client public key pK, i.e., {Ks}pK , the server could afford a classical
RSA-based signature computation, but such a solution is not acceptable, because in
our scenario, we want to avoid any heavy RSA computations at server side, i.e. re-
call Table II. We propose to adopt online/offline signatures, hereafter on/off signatures;
in this way, heavy computations can be performed offline or even by other machines,

ACM Transactions on Internet Technology, Vol. 13, No. 2, Article 5, Publication date: December 2013.
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while the online workload sums up to only one RSA encryption. Moreover, we avoid
DOS attacks at the server side by asking the client to solve a puzzle before starting
the key-establishment procedure.

Finally, we summarize the two main ingredients we need in order to perform a server
side authenticated key-establishment that does not rely on slow cryptographic opera-
tions (at server side) and it is robust to DoS attacks.

— On/Off signatures. They allow signing a message experiencing a low online computa-
tional overhead by leveraging the precomputed offline signatures. In our model, we
assume offline signatures are securely stored and retrieved when new clients need
to run the key-establishment protocol.

— Puzzles. Puzzles are well-known techniques to prevent a peer to perform a DoS at-
tack. In our case, we want to avoid malicious clients from performing DoS attacks
on the server by asking many public key encryptions. In order to avoid this, the
server asks the client to solve a computationally expensive operation (puzzle), and
therefore only motivated clients that really want to establish a secure connection go
through this procedure.

TLS/SSL backward compatibility and practical deployment. First, we observe
that LAKE needs no more than the standard cryptographic functions also used by
TLS/SSL, and therefore, in the following we assume the availability of the standard
openssl library.

In order to be easily deployed and coexist with the existing security infrastructures
LAKE provides TLS/SSL backward compatibility. For this, LAKE needs a few changes
in the client’s hello packet. In LAKE, the client starts the protocol as in the standard
TLS/SSL handshake. Clients who wish to negotiate with earlier protocols send a client
a hello message using the standard TLS/SSL hello format. Then, server will respond
with an SSL or TLS server hello. Clients who wish to communicate to servers with
LAKE should send a client hello message having an appropriate version field to note
that they support it. If the server supports only older versions, it will respond with a
server hello message accordingly; if it supports LAKE, with a LAKE server hello. The
negotiation then proceeds as appropriate for the negotiated protocol.

LAKE assumes the clients deal with public/private key pairs. Nevertheless, we ob-
serve that in LAKE (without client authentication), the client private keys do not need
to be long term certified keys. They can be periodically erased and regenerated. As
a result, managing keys in LAKE is fundamentally different than managing keys in
SSL protocol with client authentication. On the extreme, the clients could generate
keys per each SSL session (which brings additional performance penalty, though).

Finally, we observe that TLS/SSL protocol is used not only for Web traffic, but as a
security protocol for many other possibly custom built client/server applications. Since
in these new applications, the client software needs to be sent and installed by the
clients anyway, we envisage delivering LAKE as part of the client application.

5. ONLINE/OFFLINE SIGNATURES

In this section we recall a general framework for implementing an Online/Offline sig-
nature scheme [Even et al. 1989].

Let m : {m1, . . . , ml} be a message of l bits, with mi ∈ {0, 1} and i ∈ [1, l].
Let (G, S, V) represent an ordinary signature scheme [Rivest et al. 1978], and let

(g, s, v) represent a one-time signature scheme [Krawczyk and Rabin 2000; Lamport
1979], where (G, g), (S, s), and (V, v) are the generation, signing and verification algo-
rithms, respectively.

Let (SK, PK) be a pair of signing and verification keys respectively, obtained running
the G algorithm (SK, PK) ← G. For the sake of simplicity, we use the same notation

ACM Transactions on Internet Technology, Vol. 13, No. 2, Article 5, Publication date: December 2013.
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Fig. 3. Signing and verification of a message with an ordinary signature scheme.

for both the server public key and the verification key, PK. Figure 3 shows the details
of an ordinary client-server message verification procedure. The client assumes the
message m as trusted if and only if the verification algorithm V receives as input the
signature � and the verification key PK, VPK(m, �); where the signature � must be
generated by the signing algorithm S with input m and signing key SK, SSK(m) = �.

Let (sk, pk) be a pair of signing and verification keys respectively, obtained running
the g algorithm, (sk, pk) ← g. Let vpk(m, σ) be successful if and only if σ = ssk(m).

Online/Offline signature schemes are characterized by two phases: an offline com-
putation, in which the server computes a trusted (message-independent) signature, �,
yielding

� = SSK(pk) (1)
and an online computation, in which the server computes a fast (message-dependent)
signature, σ , yielding

σ = ssk(m). (2)
Generally speaking, the off-line phase (Eq. (1)) is constituted by a standard (slow)

signature scheme, RSA based, and outputs a trusted signature1 �, i.e., pk is signed
with the signing key SK. On the other side, during the on-line phase (Eq. (2)), the
server signs the message m with the signing key sk, obtaining the signature σ . We
highlight that in this case the signing algorithm s must be fast and computationally
efficient, not involving asymmetric cryptographic primitives, or more generally, modu-
lar exponentiations.

The combination of Eq. (1) and Eq. (2) provides the actual signature for the message
m, i.e., < σ , pk, � >, that has to be transmitted to the client side for the verification
phase.

The client verifies pk authenticity by means of �, i.e., checking VPK(pk, �), and sub-
sequently checking the message authenticity by means of vpk(m, σ). We stress that the
server can split heavy load operations (signing with Eq. (1)) to offline periods and use
a fast signing algorithm (s) when it has to deal with a new message. On the other side,
the workload at the client side has marginal increase because verification of one-time
signatures is also computationally efficient, and the verification algorithm (V) involves
a public key exponentiation, which is computationally fast. Figure 4 gives an overview
of the online/offline digital signature scheme run by both the client and the server.

5.1. OTS: Lamport’s One-Time Signature Scheme

Many different procedures have been proposed in order to implement On/Off signa-
tures, but to the best of our knowledge, the most computationally efficient turns out

1We denote a signature as trusted if it can be verified leveraging a PKI. In this article, we always assume
the server public/verification key PK as trusted.

ACM Transactions on Internet Technology, Vol. 13, No. 2, Article 5, Publication date: December 2013.
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Fig. 4. Online/Offline digital signatures: a general structure.

Fig. 5. OTS costruction: offline phase.

to be the original one time signatures scheme proposed by Lamport, hereafter OTS. In
fact, in such cases the online signing procedure can be implemented with a few system
calls: memcpy.

We start the analysis of the OTS from the offline phase; see Figure 5 for the
details. We assume that the server is already provided with a pair of RSA-based
signing/verification keys: PK and SK in Figure 4. We observe that the offline phase
is characterized by three main achievements: sk, pk, and �. As will be clear in the
following, in order to sign a message of l bits, we need 2l tuples of sk and pk but
we transmit back to the client only l tuples of each. Figure 5 shows the construction
procedure. First, the server generates 2 · l tuples of random bits, then OTS signing
keys, sk = [sk0, sk1]. Subsequently, the server computes pk0 and pk1 from sk0 and
sk1, respectively. pk0i = H(sk0i) and pk1i = H(sk1i), where H(◦) is a cryptographic
secure hash function such as SHA-1, and i ∈ [0, L − 1] is the index identifying the ith
processed tuple. Hereafter we refer to pk = [pk0, pk1] as the OTS verification keys.
Finally, the server generates the trusted signatures � signing the OTS verification
keys, � = SSK(pk), where SSK(◦) is the RSA signing procedure introduced by Eq. (1).

We observe that as the previous procedure is slow and computationally expensive,
in fact, in order to generate l tuples, the server has to compute 2 · l hash functions and
1 RSA-based signature. We stress how this procedure can be computed offline or even
delegated to other machines, in fact, it is completely independent of the message to be
signed.

Recalling Figure 4, we observe that the online signing phase at the server side gen-
erates σ from sk and m. Figure 6 shows the details of this procedure. The message m
is processed bit-by-bit: without loosing of generality, hereafter we assume the length

ACM Transactions on Internet Technology, Vol. 13, No. 2, Article 5, Publication date: December 2013.
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Fig. 6. OTS costruction: online phase.

of message m as l bits. The OTS signature σ is generated from the OTS signing keys
sk as a function of the ith bit value of the message m. In more detail, the algorithm set
the σi value choosing between sk0i and sk1i as function of the ith message bit mi, e.g.,
if mi = 0 than σi = sk0i, while if mi = 1 than σi = sk1i.

We observe that the online signing procedure at the server side is fast and does not
involve any cryptographic procedures, i.e., it can be implemented with l system calls,
memcpy.

5.2. OTS at the Client Side

We recall from Section 5 that the actual signature transmitted from the server to the
client in order to authenticate the message m is constituted by < PK, PK, �, pk, σ >.
First, in order to accomplish the authentication procedure, the client must be able to
verify the server RSA-based verification key PK by leveraging both the digital signa-
ture PK and the trusted third party CA. After the reception of < PK, PK, �, pk, σ > the
client has to perform two main actions: (1) verifying the authenticity of pk by means
of �, and (2) checking the validity of σ by means of pk.

Recalling that � = SSK(pk), the client can verify pk authenticity by running
VPK(pk, �) as previously discussed for Figure 3. Now, the client checks the message
authenticity by reversing the procedure performed by the server. In particular, the
client processes each bit mi of the message m, and verifies mi validity by checking that
H(σi) = pk0i if mi = 0 or H(σi) = pk1i if mi = 1.

We observe that the client workload sums up to one RSA-based signature verification
and l hash computations.

6. PUTTING EVERYTHING TOGETHER

In this section we combine the concepts previously introduced in order to provide the
final design of our key-establishment protocol.

Figure 7 shows the details of the proposed protocol. As in the standard TLS/SSL
handshake, the client starts the protocol. Actually, the client is supposed to be provided
with a pair of RSA-based public/private keys, hereafter pK, sK respectively; such keys
can be generated by the client before running the key-establishment protocol.

The client is also asked to negotiate a few parameters with the server before starting
the protocol; nevertheless, in the following, we do not deal with such aspects, and we
assume the pair client-server is aware of the protocol and the parameters in order to
make it work properly.

The client sends its own public key pK to the server. The server generates the master
secret key Ks and encrypts it with the client public key pK, obtaining the message Ms.

ACM Transactions on Internet Technology, Vol. 13, No. 2, Article 5, Publication date: December 2013.
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Fig. 7. A sketch of the proposed key-establishment protocol.

Now, the server signs the message m = H(Ms) with the OTS algorithm presented
in Section 5.1, generates a new message < Ms, σ , pk, �, PK, PK >, and sends it back
to the client. This step consumes exactly l tuple from each of the precomputed data
structures sk and pk.

The communication overhead between the server and the client can be reduced since
only half of the tuples of pk need to be transmitted by the server to the client. In fact,
recalling that pki = H(ski) (Figure 5), and only half of the ski are selected to build up
σ (Figure 6), the server has to send to the client, only the pki that do not correspond
to the ski selected during the online phase, i.e., the others can be computed by the
client.

On the other side, the client verifies the server public key PK by means of PK and
CA. Second, the client verifies the message m by means of the OTS signature (see
Section 5.2), and finally, decrypts Ms with sK, obtaining the secret key Ks, Ks = {Ms}sK .
Now, both the client and the server share a secret key and can leverage a symmetric
encryption algorithm to secure their subsequent communications.

So far, we did not consider any attacks on the server. Clearly, in the current configu-
ration, the protocol in Figure 7 can be easily exploited by both a reply attack or a denial
of service attack. We show how to effectively deal with these attacks in Section 9.

7. SECURITY ANALYSIS

In this section we present the security analysis of the LAKE protocol. We start by re-
calling the security model developed by Canetti and Krawczyk [2001], hereafter CK
model, which so far, is the most comprehensive and generic security model for ana-
lyzing authenticated key-establishment protocols. We subsequently provide a formal
analysis of the LAKE protocol under the CK model, and finally, prove it as secure under
such a model.

7.1. CK Model: Assumptions

The CK model assumes three different entities interacting with each other: the adver-
sary ADV, and the parties Pi and Pj running the protocol π to be proved as secure.
The parties interact between them running a session s of the protocol π with the aim
of establishing a session key Ks.

A session can be in one of the following states: (1) incomplete, when it has not yet
produced any outputs or (2) completed, when it has returned an output with a nonnull
key value. Each session is characterized by an internal state, which comprises the
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Fig. 8. CK-model: The game �ADV (l) played by the adversary ADV against the simulator D.

parties local working space to the session itself. In the following, we refer to the session
s, involving the client Pi and the server Pj as (Pi, Pj, s).

ADV interacts with the parties in three different ways.

— Activation. ADV might activate a party Pi to initiate the protocol π or Pj to answer
to an incoming request from Pi.

— Compromisation. The model envisages three possible attacks.
(i) Corruption. All the secrets of the target party are disclosed.

(ii) Session-state reveal. This attack can be applied to any incomplete sessions and
discloses the local state of the target session. As will be clear in the following,
the local state disclosure does not leak any information on the long-term key,
i.e., the private key of the party.

(iii) Session-key query. This attack can only be applied to any completed sessions and
discloses the session key corresponding to the target session.

— Test-session. ADV might ask for a test-session to a party. The target party answers

with a key Kb, with b ∈ {0, 1}, where K0
$←− {0, 1}l, and K1 ← Ks. Therefore, the target

party randomly chooses the key to be returned to ADV between the real session key
(K1 = Ks) and a random string (K0).

7.2. CK Model: The Game

The CK model is based on a game �ADV(l) played by the adversary ADV against the
simulator D under a security parameter l. D simulates the interactions between the
parties {P1, . . . , PN} that run the protocol π to be proved as secure. Figure 8 shows
the main entities involved in the game. D behaves as a proxy between ADV and the
parties. In particular, D answers transparently to all the requests of ADV (activations
and compromisations), but challenges ADV when this asks for a test-session. As an
example, when ADV activates the protocol π between Pi and Pj, with i, j ∈ [1, . . . , N],
D answers simulating the protocol between the two parties; yet, when ADV performs
a session-state reveal or a session-key query, D behaves accordingly. Nevertheless,
when ADV performs a test-session on the session s, D behaves differently: it stores
the session key of the party Pi on the temporary variable K1, K1 ← Ks, and computes

a random key K0 from a uniform distribution, K0
$←− {0, 1}l. Subsequently, it extracts

a random value b from a uniform distribution, b
$←− {0, 1}, and returns Kb to ADV,

accordingly, it returns K0 (K1), if b == 0 (b == 1), respectively. Eventually, ADV
returns b′ as its guess for b.
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Fig. 9. The distinguishing game �ADV (l).

THEOREM 1. A key-establishment protocol is called session-key secure, hereafter
SK-secure, in the CK model if the following conditions hold.

(1) If two uncorrupted parties complete a session, then they both output the same ses-
sion key.

(2) The advantage that ADV wins the distinguishing game �ADV(l) at the end of the
experiment (see Figure 8) is negligible in the security parameter l.

P(�ADV (l) = b) ≤ 1
2

+ ε(l), (3)

where ε(l) is a negligible function in the security parameter l.

The first condition says that uncorrupted parties that complete the key-agreement
protocol should eventually agree on a shared secret. Most importantly, the second con-
dition states that after running �ADV , ADV should not have any advantage on guessing
the session key of a target pair, or at least no more than a random guess.

The details of the game �ADV(l) are shown in Figure 9.

7.3. CK Model: Adversary Goals

The CK model assumes two different types of adversarial behaviors: the
unauthenticated-links model, hereafter UM, and the authenticated-links model, here-
after AM.

— AM Model. ADV is not allowed to generate, inject, modify, replay, and deliver mes-
sages except if the message comes from a corrupted party. In this model, the links
are authenticated, and therefore, ADV can only eavesdrop the messages in the
network.

— UM Model. ADV can compromise a party, build, and deliver messages. This is a
stronger model in which the adversary does not have the restriction of the AM
model, i.e., ADV can forge and inject messages.

Proving a protocol SK-secure directly under the UM model (by means of the �ADV(l)
game, see Figure 9) might be difficult due to the strong adversarial assumptions. How-
ever, Canetti and Krawczyk [2001] proved that it is always possible to transform a
protocol proven as secure in the AM into a protocol that is secure in the UM. Let us
recall the following theorem.
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Fig. 10. A sketch of the LAKE protocol using the CK-model.

THEOREM 2. Let π be a key-establishment protocol that is SK-secure in the AM, and
let C be any valid authenticator. Then π ′ = C(π) is SK-secure in the UM.

Therefore, given a key-establishment protocol π , SK-secure in the AM, it is always
possible to transform it into a protocol π ′, which is SK-secure in the UM. This is possi-
ble because of the authenticator C, which allows the parties to authenticate the links
involved in the communications. Canetti and Krawczyk [2001]. provided three exam-
ples of valid authenticators in their seminal paper. Although all of the proposed au-
thenticators can be adopted in our proposal, none are computationally efficient for the
server side. Therefore, in the following we split the LAKE protocol into two building
blocks: the LKE key-establishment protocol and the authenticator λLAKE. We start our
security analysis by proving LKE as secure in the AM, and subsequently, we show
that λLAKE is a valid authenticator and can be applied to LKE to obtain a SK-secure
protocol in the UM, i.e., the LAKE protocol.

7.4. LAKE Components under the CK Model

The CK model involves mainly three steps to design an SK-secure protocol in the UM.

(1) Design a basic key-establishment protocol and prove it SK-secure in the AM.
(2) Design an authenticator and prove that it is valid.
(3) Apply the authenticator to the basic protocol to produce a protocol that is automat-

ically secure in the UM model according to Theorem 2.

Figure 10 shows the LAKE protocol under the CK model. We consider two building
blocks: the key-establishment protocol, hereafter LKE, and the authenticator, here-
after λLAKE. In order to prove the security of the LAKE protocol in the UM, we fol-
low the subsequent steps: first, we prove the LKE protocol as secure in the AM by
playing the game �LKE

ADV(l); second, we prove λLAKE is a valid authenticator, and fi-
nally, we prove the security of LAKE in the UM by combining LKE and λLAKE under
Theorem 2.

7.5. Security of the LKE Key-Establishment Protocol

In the following we prove the security of the LKE protocol (the key-establishment
protocol in LAKE).

ASSUMPTION 1. The encryption scheme {◦}pK is robust to the chosen cyphertext
attack, namely {◦}pK is CCA-secure.
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Fig. 11. Entities ADV and D and their interaction in the game �LKE.

An encryption/decryption system is considered secure in terms of indistinguishabil-
ity (CCA-secure) if no adversary provided with an encryption of a message randomly
chosen from a two-element message space determined by the adversary itself, can
identify the message choice with probability significantly better than that of a ran-
dom guess. Therefore, assuming the adversary knows both the plaintexts {x, x′} and
the public key pK, he cannot identify M = {x}pK from M′ = {x′}pK , provided he is not
aware of the private key sK.

THEOREM 3. Protocol LKE is SK-secure in the AM assuming the encryption scheme
{◦}pK as CCA-secure.

PROOF. In order to prove the theorem, we have to show that LKE satisfies both
Conditions 1 and 2 of Theorem 1.

Condition 1. It is easy to see that the first condition is satisfied by the LKE protocol,
i.e., uncorrupted parties that complete a session output the same session key. If the
client and the server complete a session while uncorrupted, then the server must have
received the client public key pK, while in turn, the client must have received the
encrypted random nonce generated by the server, i.e., Ms = {x}pK . This is so because
an AM adversary, such as ADV, is not allowed to modify or inject messages belonging
to uncorrupted parties. Thus, the client first decrypts the received message from the
server, x = {Ms}sK , and second, computes Ks = H(x) and retrieves the session key Ks
generated by the server.

Condition 2. We prove the second condition of Theorem 1 by reductio ad absurdum.
We assume that there exists an adversary ADV in the AM able to win the game �LKE

ADV
(see Figure 9) with nonnegligible probability

P(�ADV (l) = b) = 1
2

+ ε(l), (4)

where ε(l) is a nonnegligible function in the security parameter l. We show that, under
such a condition, the encryption scheme is not CCA-secure, thus contradicting the
assumption.

We start by defining a game �LKE that captures the CCA-security of the encryption
function {◦}pK . The game �LKE is constituted by two entities: the adversary, ADV, and
the simulator, D. The adversary invokes the game interactions, while the simulator
performs the protocol executions. Figure 11 shows the interactions between the enti-
ties. The simulator D answers to the ADV ’s requests and simulates a virtual scenario
constituted by several parties running the LKE protocol. Eventually, ADV outputs the
bit b′ as its guess for the bit b randomly generated by D. The details of the game �LKE

are the following.

(1) Set up the security parameter l and initialize parties {P1, . . . , Pn}.
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Let s
$←− [1, . . . , S] be a generic session that involves the client Pi and the server

Pj (as in Figure 11), where S is the upper bound on the number of sessions in any
interaction. For each session (Pi, Pj, s), let xs, Ks, and Ms be the random nonce, the
secret key and the encrypted secret key, respectively, as depicted in Figure 10.

(2) Invoke ADV to interact with parties {P1, . . . , Pn} running the LKE protocol in the
AM, yielding the following.
— Message exchanges. If ADV activates (Pi, Pj, s), then let Pi send (Pi, s, pK) to

Pj. If Pj receives (Pi, s, pK), let Pj send (Pj, s, Ms) to Pi, where Ms = {xs}pK

and xs
$←− {0, 1}l, respectively. All the computations and message exchanges are

simulated by D.
— Party corruption. If ADV corrupts party Pi, then D gives ADV all information

about party Pi.
— Session exposure.2 If ADV exposes session (Pi, Pj, s), then D gives ADV all in-

formation on the session s.
— Test-session query. If ADV picks (Pi, Pj, s) as the test session, then D chooses

a random bit b
$←− {0, 1}. If b == 0 then D gives Ks (the actual session key) to

ADV, otherwise K ′
s, where K ′

s
$←− {0, 1}l, i.e., a random bit sequence.

(3) ADV returns the bit b′ as its guess for the bit b.

We observe that �LKE is a perfect-simulation of the protocol LKE under the UM,
as defined by Canetti and Krawczyk [2001]. Yet, we observe that ADV has the same
chances of a random guess to identify the correct b after the test-session query—
assuming LKE as a CCA-secure protocol, P(b = b′) = 1

2 .
Now, we prove the security of the LKE protocol. As stated before, the strategy relies

on assuming ADV as able to break LKE, and leveraging this in order to set up a CCA-
distinguisher, which by assumption is absurd (Assumption 1). Instead of the simulator
D, we consider a simulator DA, which leverages the power of ADV (able to break LKE)
in order to implement a CCA-distinguisher. DA works as follows.

— Let DA pick a random session s∗ $←− [1, . . . , S], which in turn, identifies two
parties P∗

i and P∗
j , respectively. Let also, DA generate a pair of private/ public

keys, (sK∗, pK∗) respectively, and compute K∗ = H(x∗) and M∗ = {x∗}pK∗ , where

x∗ $←− {0, 1}l.
— Message exchanges. If s 	= s∗ then DA behaves as D, otherwise if ADV activates

(P∗
i , P∗

j , s∗), then let P∗
i send (P∗

i , s∗, pK∗) to P∗
j . If P∗

j receives (P∗
i , s∗, pK∗), let P∗

j
send (P∗

j , s∗, M∗) to P∗
i . Therefore, when ADV instantiates the session s∗, DA injects

(transparently to ADV) its own generated crypto material.
— Party corruption. If ADV corrupts party P∗

j , the server in the session s∗, then DA

outputs b
$←− {0, 1} and aborts the simulation. Otherwise, DA behaves as D.

— Session exposure. If ADV exposes session s∗, then DA outputs b
$←− {0, 1} and abort

the simulation. Otherwise, DA behaves as D.
— Test-session query. If ADV picks session s∗ as the test session, then DA gives K∗ to

ADV and returns b = 0 . Otherwise, DA behaves as D.

— If ADV halts without choosing a test-session then DA outputs b
$←− {0, 1}.

2In order to ease the exposition, we refer to session exposure as all the session compromisation activities
that can be performed by ADV , i.e., session-state reveal and session-key query.
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We observe that DA is specifically designed to leverage the ADV power of breaking
the LKE protocol. In fact, DA behaves as D for all the sessions, except for the session s∗.
For such a session, DA transparently feeds ADV with self-generated crypto-material,
i.e., sK∗, pK∗, M∗ and K∗, and as will be clear in the following, this turns DA into a
CCA-distinguisher—which is an absurd.

Now, in order to demonstrate (the absurd) that DA is a CCA-distinguisher, we con-
sider the probability that both ADV and DA output the same bit value, showing that
this probability is not negligible, P(b = b′) > 1

2 . Let E be the event such that ADV
picks the session s∗ as the test session, the probability that E occurs can be computed
as P(E) = 1

S . The probability that ADV and DA output the same bit value when E oc-
curs is the same as the probability of ADV to win the �LKE game, i.e., when E occurs,
DA always returns b = 0, while ADV returns b′ = 0 if and only if it breaks the LKE
protocol, yielding

P(b = b′|E) = P(�LKE
ADV (l) = b).

Conversely, the probability that b = b′ when E does not occur yields

P(b = b′|E) = 1
2

.

In fact, if ADV instantiates any session except s∗ the output of DA is random. Finally,
the unconditioned probability that b = b′ can be computed as

P(b = b′) = P(b = b′|E)P(E) + P(b = b′|E)P(E),

which in turn can be expressed as

P(b = b′) = P(�LKE
ADV (l) = b)

1
S

+ 1
2

(1 − 1
S

),

and substituting Eq. (4) in the previous, it yields

P(b = b′) = 1
2

+ ε(l)
S

,

which is not negligible by assumption.
Therefore, we state that, given a CCA-secure encryption scheme, the LKE protocol

is proved as secure under the AM in the CK model.

Remark. The security of protocol LKE assumes that operations related to the com-
putation of session keys are executed in a separate secure module [Tin et al. 2003].
Therefore, only the session key Ks is disclosed by the session exposure and not the
long-term secrets such as the private key.

7.6. Validity of the LAKE Authenticator

In this section we analyze the security of the LAKE authenticator, hereafter λLAKE.

THEOREM 4. λLAKE is a valid authenticator if the signature scheme (G, S, V) is
forgery proof.

PROOF. We consider an adversary able to break the λLAKE authenticator and we
prove that if such an adversary exists, then it is a successful signature forger.

We recall the λLAKE authenticator in Figure 12. Figure 12(a) shows the signature
generation: we assume sk, pk, �, and PK as available from the offline phase. Moreover,
we recall that the online phase sums up to a selection of the elements in sk as a function
of the bit values in m. The resulting signature (σ , pk, �, PK) is sent to the client for
the verification procedure.
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Fig. 12. The λLAKE authenticator: (a) signature generation and (b) signature verification.

As for the verification (Figure 12(b)), in order to ease the discussion, we refer to
the selection of the elements of pk, as functions of the bit values in m, as pk(m), i.e.,
recalling Figure 5, pk0i (pk1i) is selected if the ith bit of m is equal to 0 (1). There-
fore, the signature verification is constituted by two steps: (1) pK verification and
(2) message authentication. We assume the public key PK as trusted, i.e., its authen-
ticity can be verified by means of a trusted third party or it is sent to the client via an
out-of-bandwidth trusted channel.

If the adversary can break the λLAKE signature verification procedure, then the client
will accept a message m′ as coming from the purported server, while it has been gener-
ated by ADV and sent to the client with the following signature (σ ′, pk′, �, PK), where
σ ′ and pk′ have been generated by ADV, while � and PK have been retrieved by eaves-
dropping the client-server communication. Yet, if ADV breaks λLAKE, it means that the
verification step of pk′ is successfully performed by the client, i.e., VPK(pk′, �) = true,
therefore ADV has been able to forge the signature � by � = SSK ′(pk′), where
SK ′ is the ADV ’s signature key. This is a contradiction with the assumption that
� = SSK(pk).

7.7. Security of LAKE in the UM

Theorem 2 from Canetti and Krawczyk [2001] provides a modular methodology in or-
der to prove an authenticated key-establishment as secure. This approach involves
proving the security of the protocol on a simplified scenario, i.e., a game �ADV played
by a weak adversary (AM model), and subsequently extending it by means of a valid
authenticator (λLAKE).

We proved π = LKE as SK-secure in AM (Section 7.5) and we validated the authen-
ticator C = λLAKE (Section 7.6). Now, recalling Theorem 2, we state that protocol π ′ =
LAKE is secure under the UM by combining LKE with λLAKE, i.e., π ′ = C(π).

8. PERFORMANCE EVALUATION

8.1. The Security Parameters l and L

The security of our protocol depends on the parameters l and L. Table III shows a com-
parison in terms of security among different key lengths and crypto algorithms, e.g.,
the RSA-based encryption with a key length of 1024 bits provides almost the same se-
curity as a symmetric encryption algorithm that adopts a key length of 80 bits [Orman
and Hoffman 2004]. Therefore, in the following, we assume l ∈ {56, 80, 104, 128, 144}
with the corresponding RSA key length, L ∈ {512, 1024, 2048, 3072, 4096}, respectively.
Recalling Figure 7, we assume the secret key Ks has a fixed length of l bits, while the
encrypted message Ms is in turn L bit long. Nevertheless, a one-time signature is com-
puted on an l bit long message, i.e., the first l bits of m = H(Ms). Therefore, in order
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Table III. Security Equivalence between
Asymmetric and Symmetric Crypto (Key-Lengths)

RSA-based crypto (L) Symmetric crypto (l)
512 56

1024 80
2048 104
3072 128
4096 144

Table IV. Client-Server Workloads for the Proposed
Key-Establishment Protocol

CLIENT side SERVER side
Online Offline

Hash Computations l 1 2 · l
RSA Signing 0 0 1
RSA Verifying 1 0 0
RSA Encryption 0 1 0
RSA Decryption 1 0 0

Table V. Client-Server Workloads for the TLS/SSL
Standard Handshake

CLIENT side SERVER side
Hash Computations 1 1
RSA Signing 0 0
RSA Verifying 1 0
RSA Encryption 1 0
RSA Decryption 0 1

to sign a message m, each of sk and pk (Figure 5) needs l tuples of length l bits each
one, i.e., for the pki computations we again consider only the first l bits of the SHA-1
output.

8.2. Qualitative Analysis

Table IV shows a summary of the crypto functions run by both the client and the
server in order to establish the secret key Ks encrypted with an RSA-based public
key procedure that generates a message Ms of L bits. We want to stress that the offline
phase at the server side can be computed by the server itself during periods of low CPU
utilization or even by other machines. Yet we observe that the server undergoes only
one RSA-based public key encryption during its online phase while all the workload is
moved to the offline phase. On the other side, the client workload sums up to l hash
computations, 1 RSA verification, and finally 1 RSA decryption.

In the following, we provide a qualitative comparison between the proposed ap-
proach and the standard TLS/SSL handshake introduced in Section 3.3.

We start our analysis from the client side. The client has to accept an increasing
computational workload moving from the TLS/SSL handshake to our protocol, in fact,
the number of hash computations passes from 1 to l. Nevertheless, the client saves
an RSA encryption but has to perform an RSA decryption, which is generally more
computationally expensive.

At the server side (online phase), we observe a severe improvement of the perfor-
mance between the TLS/SSL handshake and our proposed protocol. The server saves
the RSA decryption and it needs only one RSA encryption, which is computationally
less expensive.
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Fig. 13. Probability distribution function associated to the SHA-1 execution time.

8.3. A Real Testbed

In order to test the real performance of our protocol, we implemented it by means of
the OpenSSL library (version 0.9.8) [OpenSSL 2012]. We developed a client-server pair
that runs the protocol proposed in Section 6. The software [Oligeri 2012] is constituted
by three main files: the server, which waits for a new incoming connection, the client,
which initiates a new connection, and finally, the generator, which generates the OTS
tables shown in Figure 5. As stated before, the generator is run by the server—or by
other machines—asynchronously with respect to the new client requests.

All the results presented in this work have been generated running the server on a
Intel Core i3 CPU 540@3.07GHz with 8GB of RAM. We performed many client-server
connections between two computers on the same local network, and collected statistics
stop-watching the code of the critical parts, i.e., measuring the time spent by the CPU
in all the cryptographic functions. We considered four RSA key lengths, 512, 1024,
2048, and 4096, respectively, and we adopted secret keys Ks of length equal to 56, 80,
104, 128, and 144 bits, respectively.

We start our analysis by measuring the SHA-1 execution time, hereafter TR.
Figure 13 shows the cumulative distribution function associated to the SHA-1 com-
putation time. We observe how in our case the execution of the SHA-1 algorithm
(provided by the OpenSSL library) needs less than 2μs in 96% of the cases. From now
on, we consider TR = 2μs as the reference unit time, and all the subsequent measures
will be provided with respect to it.

8.4. Server Side Performance with our Protocol

Recalling Figure 7, we observe how the server side workload sums up to one RSA-based
encryption and one OTS signing procedure during the online phase. Figure 14 shows
the time spent by the CPU in order to encrypt the secret key Ks with the RSA-based en-
cryption algorithm, Ms = {Ks}pK . The measures have been collected with varying RSA
key lengths: 512, 1024, 2048, 3072, and 4096; while, the execution time is expressed
as function of TR, i.e., the reference unit time needed to execute the SHA-1 procedure.
The error bars in Figure 14 show the quantiles 5, 50, and 95 associated to the time
needed by the CPU in order to perform 100 public key encryptions; we observe how
the median values are closer to the minimum values: we attribute this phenomena to
the CPU interrupts that may delay the computations.
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Fig. 14. RSA encryption time at server side.

Fig. 15. OTS signature computation time at server side.

Recalling Figure 6, the OTS signing procedure is performed by means of a sequence
of system calls memcpy, and therefore its overhead depends only on the amount of
memory to copy. The length of the message m = H(Ms) to be signed is fixed to l bits,
therefore, we estimated the OTS computation time as a function of the RSA key length.
Error bars in Figure 15 show the quantiles 5, 50, and 95 associated to the CPU time
of 100 OTS signing procedures varying the length of the RSA key length. As for the
results presented in Figure 14, we attribute the heavy tails (delays) to the CPU inter-
rupts that may delay the execution of the procedure. Yet, we highlight how the CPU
time is almost linear with respect to the key length. As expected, the time needed by
the system call memcpy is a linear function of the number of bytes to copy.

Finally, we sum up both of the previous computational workloads. Figure 16 shows
the stacked histograms of the median time spent by the CPU in both the RSA en-
cryption (green) and OTS signing procedures (blue). First, we highlight how the time
spent by the CPU in the signing procedures is negligible with respect to the RSA en-
cryptions for all the cases. Moreover, we observe that, using our protocol, the overall
online computational workload sums up to less than 160 SHA-1 computations for a
standard RSA-1024 key length, and increases to about 650 SHA-1 computations for
the strongest RSA-4096 key.
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Fig. 16. Our proposed protocol: Total computational workload.

Fig. 17. TLS/SSL VS Our proposed protocol: Total computational workload.

8.5. Server Side Performance with TLS/SSL Handshake

In the following we analyze the computational workload of the standard TLS/SSL
handshake. In Table V, we observe that a server running the TLS/SSL handshake
undergoes only one heavy RSA procedure: the RSA decryption of the message sent by
the client—{{x}PK}SK in Figure 2. The red histograms in Figure 17 show the median
time spent by the CPU during the RSA decryption needed to perform the TLS/SSL
handshake. On the other side, the stacked histograms (blue and green) illustrate the
performance of our proposed solution (Figure 16).

We observe that the server workload is severely reduced by adopting our protocol
with respect to the standard TLS/SSL handshake. In fact, the workload of the later
is always heavier when the key size is larger than 512 bits. In particular, we high-
light that adopting the standard RSA-1024 key length, our protocol is about 4.4 times
faster, but the gain increases when the key length is larger—our protocol is about
7.3, 18.6, and 20.1 times faster when adopting RSA-2048, RSA-3072, and RSA-4096,
respectively.
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Table VI. Comparison with Previous Solutions

Castelluccia Bicakci Our Theo. Our Exp.
RSA-512 - 8.5 10 0.9
RSA-1024 11.33 16.2 18 4.4
RSA-2048 - 33.2 33 7.3
RSA-3072 - - 43.5 18.7
RSA-4096 19.12 64.1 61 20.1

8.6. Comparison with Other Solutions

In this section we compare the performance of our protocol with that obtained by
Castelluccia et al. [2006] and Bicakci et al. [2006].

First, we observe that our performance results have been obtained running a real
server and a real client on a local network, while performance results by others have
been obtained by running the speed test provided by the OpenSSL library. Second, the
results from Bicakci et al. [2006] are only related to signing/verification RSA proce-
dures and not to encryption/decryption procedures; in fact the authors assumed sign-
ing and verification have the same workloads for decryption and encryption.

In order to compare performance, we summarize the workloads that the server must
undergo in the various cases. In the standard TLS/SSL key-establishment, the server
has to perform only one RSA decryption (see Figure 2), while in the solutions of both
ourselves and Bicakci et al. [2006], the server undergoes one RSA encryption and the
OTS signing procedure.

Let us introduce the speedup factor S, which takes into account the ratio between
the RSA decryption and the encryption computation times, such as

S = T(RSA-Dec.)
T(RSA-Enc.) + T(OTS Sign.)

.

S represents how many times our solution is faster that the standard TLS/SSL key-
establishment protocol.

A similar analysis has been performed in both Castelluccia et al. [2006] and Bicakci
et al. [2006], therefore all the solutions can be compared with respect to the workload
of the TLS/SSL handshake. Table VI summarizes the performance of all the proposed
protocols. The Bicakci et al. [2006] solution outperforms the Castelluccia et al. [2006]
solution for both the RSA-1024 and RSA-2048 configurations. As stated before, such
solutions have been tested in a “synthetic environment”, i.e., openssl speed is an infi-
nite loop of RSA calls, and therefore, in the last two columns of Table VI, we report the
performance of our solution computed in two different ways: Our Theo., which comes
from openssl speed, and Our Exp., which is related to the real measures presented
in Section 8.4. First, we observe that using openssl speed, our results confirm the ex-
treme performance gain of the OTS-based key-establishment previously introduced by
Bicakci et al. [2006]. Second, we observe how openssl speed can only be considered as a
theoretical upper bound for the RSA procedures performance, in fact, the performance
of a real test-bed is severely reduced, although our solution guarantees a performance
speed-up with respect to the standard TLS/SSL handshake in a range between 4.4 and
20.1 as a function of the RSA key length.

8.7. Communication Overhead

In this section we analyze the communication overhead introduced by our solution. Re-
calling Section 6, the server has to send to the client a message carrying the following
information: (1) the encrypted secret key k as M, (2) the OTS signature σ , (3) the OTS
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Fig. 18. Communication overhead of our solution as a function of the RSA key length.

verification keys pk, (4) the trusted signature �, (5) its own public key PK, and finally,
the digital signature PK. The bandwidth overhead (in bytes) sums up to

L
8

+ l · l
8

+ l · l
8

+ L
8

+ L
8

+ L
8

= 1
2

L + 1
4

l2.

Recalling Table III, Figure 18 shows the communication overhead introduced by our
solution as a function of the RSA key length. Although we observe that the communi-
cation overhead is high, i.e., about 1KB, 2.1KB, 3.7KB, 5.6KB, and 7.2KB, for RSA key
lengths equal to 512, 1024, 2048, 3072, and 4096 bits, respectively; we want to stress
that, to the best of our knowledge, our solution provides the lowest computational
workload at the server side.

9. AVOIDING REPLY ATTACKS AND DENIAL OF SERVICE

The protocol presented in Section 6 can be easily exploited by either a reply attack or
a Denial of Service attack (DoS).

A reply attack can be mounted by a malicious third party by repeating or delaying
the first communication between the client and server (see Figure 7). We suggest a
solution similar to the original TLS/SSL presented in Figure 2: the client generates
rc and sends it to the server together with pK. In turn, the server generates rs, x and
calculates Ms as k = H(x, rc, rs), and finally, it encrypts x to obtain Ms. Together with
Ms, it also sends rs to the client (in plaintext). The client decrypts Ms, obtains x, and
gets Ks by calculating H(x, rc, rs).

As for the DoS attacks, our proposed protocol (even without client puzzles) is in
a better position than the standard TLS/SSL handshake to deal with DoS and even
dDoS attacks, since it requires less computational load on the server side. An attacker
needs to send more bogus requests to bring the server down because the server can
now respond to each of client requests by spending less of its computational resources.
Nevertheless, we observe that the server answers each new client with a public key
encryption and this can be leveraged by malicious clients in order to waste the server’s
resources. In order to avoid the previous issue, we propose adopting client puzzles;
[Dean and Stubblefield 2001; Juels and Brainard 1999]. When a new client wants to
establish a new secret key with the server, it is requested to solve a computationally
expensive puzzle, which prevents malicious clients from sending an excessive number
of bogus requests to the server.
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Fig. 19. Avoiding DoS/dDoS with puzzles: the server asks the client for a puzzle solution before initiating
the key-establishing protocol.

Therefore, before initiating the real key-establishment protocol, the client-server
pair exchanges three messages. Figure 19 shows the messages exchanged in order
to negotiate the puzzle: the client initiates the communication sending to the server a
random nonce rc. The server replies with a random nonce rs and the puzzle (p, hr).

The puzzle can be precomputed offline as follows: at the server, a random string r of
R bits, r = [r0, . . . , rR−1], decides the puzzle complexity pc, and finally, sets to zero the
first pc bits of the random string r obtaining p: p = [00, . . . , 0pc , rpc+1 , . . . , rR−1]. Finally,
the server performs a hash computation of r: hr = H(r).

Now, the client is asked to solve the puzzle, that is, to find a preimage of the re-
ceived hash hr leveraging the knowledge of p. Therefore, the client starts an exhaus-
tive search on a space of cardinality 2pc and will find a solution after an average trial
of 2pc/2. After finding the solution p, the client sends back to the server H(rc, p, rs, pK)
and its public key pK. We observe that the puzzle solution p is never disclosed on the
channel, and therefore, only the client that has solved the puzzle can proceed with the
LAKE protocol. In turn, the server verifies the solution by computing only one hash
function.

The proposed puzzle allows the server to dynamically choose the complexity.
Figure 20 shows the time required for the client in order to find the solution as a
function of the puzzle complexity pc. As in the previous figures, the time refers to the
SHA-1 execution time, and each of the error bars represents the quantile 5, 50, and
95, of 100 executions on our reference machine. Finally, we observe that the puzzle
solution time is exponential, as expected.

10. CONCLUSIONS

This work proposed a new server-side authenticated key-establishment protocol, which
minimizes the server computational workload.

We adopted on/off signatures in order to reduce the online computational workload
of the server. In fact, server workload is shifted partially to the client and partially to
the offline phases, while the online server computation sums up to only one RSA-based
encryption.

To the best of our knowledge LAKE represents the most computationally efficient so-
lution for the server side; in fact, we proved that the server can, theoretically, perform
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Fig. 20. Time to solve the puzzle as a function of its complexity.

an RSA-2048 based handshake 33 times faster than the standard TLS/SSL handshake
(using the same RSA-2048 procedures).

Finally, we have shown how to integrate the LAKE protocol with client-puzzles in
order to make it robust to DoS attacks.

Future works are focused on the optimization of the communication overhead of the
current protocol.
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